Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576164

RESUMEN

PURPOSE: An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte-Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation. THEORY AND METHODS: We present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat-based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach. RESULTS: Our simulation outperforms isochromat-based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte-Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state-tensor-based EPG simulation approach for the contribution of dephased states including spatial encoding and T 2 ' $$ {T}_2^{\prime } $$ effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non-instantaneous pulses via hard-pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed. CONCLUSIONS: Phase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.

2.
Magn Reson Med ; 91(6): 2391-2402, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317286

RESUMEN

PURPOSE: Clinical scanners require pulsed CEST sequences to maintain amplifier and specific absorption rate limits. During off-resonant RF irradiation and interpulse delay, the magnetization can accumulate specific relative phases within the pulse train. In this work, we show that these phases are important to consider, as they can lead to unexpected artifacts when no interpulse gradient spoiling is performed during the saturation train. METHODS: We investigated sideband artifacts using a CEST-3D snapshot gradient-echo sequence at 3 T. Initially, Bloch-McConnell simulations were carried out with Pulseq-CEST, while measurements were performed in vitro and in vivo. RESULTS: Sidebands can be hidden in Z-spectra, and their structure becomes clearly visible only at high sampling. Sidebands are further influenced by B0 inhomogeneities and the RF phase cycling within the pulse train. In vivo, sidebands are mostly visible in liquid compartments such as CSF. Multi-pulse sidebands can be suppressed by interpulse gradient spoiling. CONCLUSION: We provide new insights into sidebands occurring in pulsed CEST experiments and show that, similar as in imaging sequences, gradient and RF spoiling play an important role. Gradient spoiling avoids misinterpretations of sidebands as CEST effects especially in liquid environments including pathological tissue or for CEST resonances close to water. It is recommended to simulate pulsed CEST sequences in advance to avoid artifacts.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Aumento de la Imagen/métodos , Concentración de Iones de Hidrógeno , Interpretación de Imagen Asistida por Computador/métodos
3.
NMR Biomed ; 37(5): e5096, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343093

RESUMEN

Chemical exchange saturation transfer (CEST) is a magnetic resonance (MR) imaging method providing molecular image contrasts based on indirect detection of low concentrated solutes. Previous CEST studies focused predominantly on the imaging of single CEST exchange regimes (e.g., slow, intermediate or fast exchanging groups). In this work, we aim to establish a so-called comprehensive CEST protocol for 7 T, covering the different exchange regimes by three saturation B1 amplitude regimes: low, intermediate and high. We used the results of previous publications and our own simulations in pulseq-CEST to produce a 7 T CEST protocol that has sensitivity to these three B1 regimes. With postprocessing optimization (simultaneous mapping of water shift and B1, B0-fitting, multiple interleaved mode saturation B1 correction, neural network employment (deepCEST) and analytical input feature reduction), we are able to shorten our initially 40 min protocol to 15 min and generate six CEST contrast maps simultaneously. With this protocol, we measured four healthy subjects and one patient with a brain tumor. We established a comprehensive CEST protocol for clinical 7 T MRI, covering three different B1 amplitude regimes. We were able to reduce the acquisition time significantly by more than 50%, while still maintaining decent image quality and contrast in healthy subjects and one patient with a tumor. Our protocol paves the way to perform comprehensive CEST studies in clinical scan times for hypothesis generation regarding molecular properties of certain pathologies, for example, ischemic stroke or high-grade brain tumours.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen
4.
Magn Reson Med ; 90(4): 1345-1362, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357374

RESUMEN

PURPOSE: An end-to-end differentiable 2D Bloch simulation is used to reduce T2 induced blurring in single-shot turbo spin echo sequences, also called rapid imaging with refocused echoes (RARE) sequences, by using a joint optimization of refocusing flip angles and a convolutional neural network. METHODS: Simulation and optimization were performed in the MR-zero framework. Variable flip angle train and DenseNet parameters were optimized jointly using the instantaneous transverse magnetization, available in our simulation, at a certain echo time, which serves as ideal blurring-free target. Final optimized sequences were exported for in vivo measurements at a real system (3 T Siemens, PRISMA) using the Pulseq standard. RESULTS: The optimized RARE was able to successfully lower T2 -induced blurring for single-shot RARE sequences in proton density-weighted and T2 -weighted images. In addition to an increased sharpness, the neural network allowed correction of the contrast changes to match the theoretical transversal magnetization. The optimization found flip angle design strategies similar to existing literature, however, visual inspection of the images and evaluation of the respective point spread function demonstrated an improved performance. CONCLUSIONS: This work demonstrates that when variable flip angles and a convolutional neural network are optimized jointly in an end-to-end approach, sequences with more efficient minimization of T2 -induced blurring can be found. This allows faster single- or multi-shot RARE MRI with longer echo trains.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Factores de Tiempo , Protones
5.
NMR Biomed ; 36(10): e4955, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37076984

RESUMEN

APTw CEST MRI suffers from long preparation times and consequently long acquisition times (~5 min). Recently, a consensus on the preparation module for clinical APTw CEST at 3 T was found in the community, and we present a fast whole-brain APTw CEST MRI sequence following this consensus preparation of pulsed RF irradiation of 2 s duration at 90% RF duty-cycle and a B1,rms of 2 µT. After optimization of the snapshot CEST approach for APTw imaging regarding flip angle, voxel size and frequency offset sampling, we extend it by undersampled GRE acquisition and compressed sensing reconstruction. This allows 2 mm isotropic whole-brain APTw imaging for clinical research at 3 T below 2 min. With this sequence, a fast snapshot APTw imaging method is now available for larger clinical studies of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Fantasmas de Imagen , Amidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...